Role of extracellular ATP and P2 receptor signaling in regulating renal cyst growth and interstitial inflammation in polycystic kidney disease
نویسنده
چکیده
Polycystic kidney diseases (PKD) are a group of inherited ciliopathies in which the formation and growth of multiple cysts derived from the distal nephron and collecting duct leads to the disruption of normal kidney architecture, chronic interstitial inflammation/fibrosis and hypertension. Kidney failure is the most life-threatening complication of PKD, and is the consequence of cyst expansion, renal interstitial disease and loss of normal kidney tissue. Over the last decade, accumulating evidence suggests that the autocrine and paracrine effects of ATP (through its receptor family P2X and P2Y), could be detrimental for the progression of PKD. (2009). In vitro, ATP-P2 signaling promotes cystic epithelial cell proliferation, chloride-driven fluid secretion and apoptosis. Furthermore, dysfunction of the polycystin signal transduction pathways promotes the secretagogue activity of extracellular ATP by activating a calcium-activated chloride channel via purinergic receptors. Finally, ATP is a danger signal and could potentially contribute to interstitial inflammation associated with PKD. These data suggest that ATP-P2 signaling worsens the progression of cyst enlargement and interstitial inflammation in PKD.
منابع مشابه
Altered ATP-sensitive P2 receptor subtype expression in the Han:SPRD cy/+ rat, a model of autosomal dominant polycystic kidney disease.
The effects of extracellular ATP on fluid secretion and reabsorption by renal epithelial cells, as well as its known effects on cell proliferation and death, are potentially important contributory factors in the development and growth of renal cysts. In this study, we have investigated the protein and mRNA expression of several P2Y receptor subtypes (P2Y(1,2,4,6)), as well as the P2X(5) and P2X...
متن کاملAttenuated, flow-induced ATP release contributes to absence of flow-sensitive, purinergic Cai2+ signaling in human ADPKD cyst epithelial cells.
Flow-induced cytosolic Ca2+ Ca(i)2+ signaling in renal tubular epithelial cells is mediated in part through P2 receptor (P2R) activation by locally released ATP. The ability of P2R to regulate salt and water reabsorption has suggested a possible contribution of ATP release and paracrine P2R activation to cystogenesis and/or enlargement in autosomal dominant polycystic kidney disease (ADPKD). We...
متن کاملPurinergic signaling in inflammatory renal disease
Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signaling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purine...
متن کاملRole of adenosine 5'-triphosphate in regulating renal microvascular function and in hypertension.
ATP is an essential energy substrate for cellular metabolism, but it can also influence many biological processes when released into the extracellular milieu. Research has established that extracellular ATP acts as an autocrine/paracrine factor that regulates many physiological functions. Alternatively, excessive extracellular ATP levels contribute to pathophysiological processes, such as infla...
متن کاملAutocrine extracellular purinergic signaling in epithelial cells derived from polycystic kidneys.
ATP and its metabolites are potent autocrine agonists that act extracellularly within tissues to affect epithelial function. In polycystic kidneys, renal tubules become dilated and/or encapsulated as cysts, creating abnormal microenvironments for autocrine signaling. Previously, our laboratory has shown that high-nanomolar to micromolar quantities of ATP are released from cell monolayers in vit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013